
Advanced Methods for Modeling and Predicting
Human Behaviour

Introduction

Markov chains provide a simple way to model sequences of events where the probability of the next state
depends only on the current state (the  memoryless property).  However,  human behaviour is  rarely truly
memoryless.  More  sophisticated  models  incorporate  unobserved  states,  causal  structure,  nonlinear
dynamics,  network  interactions,  stochastic  shocks  and  long–range  dependencies.  This  report  surveys
several  complementary  modelling  approaches—hidden Markov  models,  Bayesian  networks,  state‑space
models  and  Kalman  filtering,  stochastic  differential  equations,  reinforcement  learning,  graph  neural
networks, agent‑based simulations, chaos theory and information‑theoretic methods—and describes how
they  can  be  combined  to  enhance  AI‑powered  behavioural  prediction.  Each  section  cites  original
peer‑reviewed research and includes a demonstration to provide an intuitive understanding of the method.

Hidden Markov Models (HMMs)

Concept and Applications

A basic Markov chain assumes that the current state is fully observable. In mental‑health applications, true
internal states (stress, mood or intent) are rarely measured directly.  Hidden Markov models (HMMs) extend
Markov chains by assuming that observations are generated by unobserved hidden states.  An HMM is
specified by a transition matrix for hidden states and an emission matrix for observations.

An  experiment  on  mouse  locomotion  in  a  visual‑cliff  test  used  a  three‑state  HMM to  classify  resting, 
exploring and navigating behaviour. The HMM analysis revealed that mice transition between these states
rather than exhibiting simple avoidance, highlighting the complex structure of behaviour . HMMs have
also been used to detect speech patterns, stress levels and engagement in psychotherapy sessions.

Demonstration

The diagram above shows a simple three‑state Markov chain (a reduced form of an HMM without hidden
observations). Each arrow is labelled with a transition probability. In an HMM, observations (e.g., patient
messages) would be emitted from hidden states and used by algorithms like the Viterbi algorithm to infer
the most probable sequence of hidden states.
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Bayesian Networks and Dynamic Bayesian Networks

Concept and Applications

Bayesian networks (BNs) are directed acyclic graphs in which nodes represent variables and edges encode
conditional dependencies. They allow explicit representation of causal structure and can incorporate expert
knowledge. When the graph is unrolled over time, the model becomes a dynamic Bayesian network (DBN). A
DBN includes an initial network specifying the joint distribution at time 0 and a transition network encoding
how variables at time t influence variables at time t+1 . A study examining social determinants of mental
health  built  a  DBN  where  mental‑health  status  at  the  next  time  point  depended  on  general  health,
loneliness and community satisfaction .

DBNs are useful for causal inference and early‑warning systems because they can simulate the effect of
interventions on later outcomes. They naturally handle missing data through probabilistic reasoning and
support online updating as new data arrive.

Demonstration

The figure shows a simple DBN with two variables (health and stress) across two time steps. Solid arrows
represent causal relations. Inter‑time arrows encode how health and stress at time t influence their values
at time t+1; the diagonal arrow shows cross‑temporal influence (stress t → health ). Real DBNs may include
many variables, but the principle of modelling causal dependencies across time remains the same.

State‑Space Models and Kalman Filtering

Concept and Applications

State‑space models describe how a hidden continuous‑valued state evolves over time. They consist of a state
transition equation and an observation equation. A widely used linear–Gaussian special case is the Kalman
filter, which provides optimal recursive estimation of the hidden state. Kalman filtering has been applied to
estimate  core  temperature  from heart‑rate  measurements  in  occupational  settings .  However,  many
psychological processes are nonlinear, and linear models like vector autoregression (VAR) or Kalman filters
may fail to capture dynamic feedback loops. Recent work suggests that piecewise‑linear recurrent neural
network (PLRNN) state‑space models can better forecast mental‑health trajectories because they allow
nonlinear dynamics while remaining interpretable .

Demonstration

The plot shows a one‑dimensional state‑space model where the true position (blue) increases linearly with
time, noisy observations (orange points) deviate randomly, and a Kalman filter (green) estimates the latent
state. The filter combines prior predictions with new observations to produce smoothed estimates.

Continuous‑Time and Stochastic Differential Equations

Many  psychological  phenomena  evolve  continuously.  Stochastic  differential  equations (SDEs)  model  how
states change under deterministic drift and stochastic diffusion. An SDE of the form dX_t = θ(μ − X_t) dt + σ
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dW_t  (the  Ornstein–Uhlenbeck  process)  captures  mean‑reverting  dynamics.  SDEs  have  been  used  to
model  affect  dynamics  with  parameters  representing  attractor  points  and  reactivity  to  inputs .
Continuous‑time models handle irregular sampling and reveal  subtle changes better than discrete‑time
models .

The time series above shows an Ornstein–Uhlenbeck process. The state wanders randomly but tends to
revert toward a mean (0). This behaviour is analogous to mood fluctuations that drift around a baseline with
random shocks.

Reinforcement Learning (RL)

Concept and Applications

Reinforcement learning models an agent interacting with an environment to maximize cumulative reward.
RL has been adopted in mental‑health research to learn dynamic treatment regimes that adapt interventions
based on patient response. Reviews note a rapid increase in healthcare applications of RL since 2020 and
highlight  its  potential  to  tailor  care  but  caution about  data  quality  and transparency .  RL  has  been
proposed for preventing depression relapse by analyzing behavioural data, detecting risk and optimizing
personalized interventions .

Demonstration

In  this  two‑armed  bandit  simulation,  the  agent  chooses  between  two  arms  with  unknown  reward
probabilities (0.2 and 0.8) using an epsilon‑greedy strategy (ε=0.1). The red curve counts the number of
times the optimal arm was selected; the blue curve accumulates rewards. Over time, the agent learns to
favor the better arm, illustrating how RL can learn personalised intervention policies.

Graph Neural Networks (GNNs)

Concept and Applications

Human  behaviour  is  embedded  in  social  networks  and  multimodal  brain‑network  data.  Graph  neural
networks process data defined on graphs by iteratively aggregating information from neighboring nodes. A
multimodal depression detection model called  EMO‑GCN used GNNs to integrate EEG and speech data,
achieving  96.3%  accuracy  in  diagnosing  major  depressive  disorder .  A  deep  graph‑learning  model
combining fMRI and EEG connectivity predicted antidepressant responses with modest but significant R²
values and highlighted key brain regions .

Demonstration

The  schematic  network  above  represents  individuals  (nodes)  connected  by  social  ties  (edges).  GNNs
propagate  information  along  edges,  enabling  a  node’s  hidden  representation  to  reflect  its  context.  In
mental‑health applications, nodes might represent brain regions or people, and edges represent functional
connectivity or social interactions.
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Agent‑Based Modelling

Concept and Applications

Agent‑based models (ABMs) simulate the decisions of individual agents and their interactions with each other
and  the  environment.  ABMs  are  particularly  useful  when  complex  system  behaviour  emerges  from
interactions rather than individual characteristics. A public‑health article argues that agent‑based modelling
can represent the complex causal architecture of health behaviour by simulating entities whose actions
influence and are influenced by their environment . ABMs allow heterogeneity and interaction effects
that are difficult to capture with aggregate models .

Demonstration

The image shows a Schelling segregation simulation. Two types of agents (blue and red) occupy a grid.
Agents move to a vacant location if too few neighbours are of the same type. Even when agents only have a
mild  preference  for  similar  neighbours  (threshold   30%),  the  system  evolves  into  segregated  clusters,
illustrating how complex group patterns can emerge from local rules.

Chaos Theory, Fractals and Complex Systems

Concept and Applications

Traditional  health‑behaviour  models  assume  linear  relationships—small  inputs  produce  proportionally
small outputs. Resnicow and Page argue that behaviour change often occurs through quantum events that
resemble chaotic processes; change is sensitive to initial conditions, highly variable and difficult to predict

. A companion debate article describes four key principles: (1) chaotic systems can be mathematically
modelled but are hard to predict; (2) they are sensitive to initial conditions; (3) complex systems involve
many interacting parts; and (4) results are greater than the sum of parts . Small changes in knowledge
or attitude may dramatically alter outcomes, and interactions can produce nearly infinite patterns .

Chaos  theory  suggests  that  human  behaviour  may  follow  fractal  patterns  with  strange  attractors.
Recognizing chaotic dynamics allows therapists to focus on tipping points rather than linear progress. For
instance, sudden insights or epiphanies (quantum change) may trigger lasting transformations .

Demonstration

The logistic map x_{n+1}=a x_n (1−x_n) with a=3.9 exhibits chaos. Two trajectories with almost identical
initial conditions (0.2 and 0.2001) diverge dramatically over time, illustrating sensitivity to initial conditions.
Such unpredictability underscores why linear models may fail to anticipate behavioural shifts.

Information‑Theoretic Approaches

Concept and Applications

Information theory quantifies uncertainty and relationships between variables. Shannon entropy measures
the  average information  content  of  a  random variable.  Mutual  information  quantifies  the  dependence
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between two variables. In computational psychiatry, information theory provides a framework to describe
information processing and its disorders. For example, Silverstein et al. argue that foundational concepts
such as Shannon information, entropy, data compression and strategies to increase the signal‑to‑noise ratio
can offer novel insights into cognitive impairments and guide computational models of schizophrenia .
Recent  extensions such as  infomax and  partial  information decomposition can model  failures  in  sensory
tuning, perceptual organization and cognitive control .

Information theory has been used to analyse cognitive control tasks: fMRI studies show that activation of
the cognitive control network correlates with the entropy of a task . Mutual information can decompose
the  information  required  for  stimulus–response  mapping  into  sensorimotor,  contextual  and  episodic
components . Information‑theoretic measures have also been applied to EEG to detect depression, to
measure complexity of physiological signals and to evaluate treatment decisions.

Demonstration

The plot displays the entropy of a binary random variable with probability p of being 1. Entropy is maximal
(1 bit)  when p=0.5,  reflecting maximum uncertainty,  and decreases toward 0 as the outcome becomes
certain.  In behaviour analysis,  rising entropy may indicate increased unpredictability  or complexity in a
person’s actions, whereas decreasing entropy suggests more stereotyped behaviour.

Sequence Models: RNNs, LSTMs and Transformers

Concept and Applications

Recurrent  neural  networks  (RNNs)  and  their  gated  variants  (LSTMs,  GRUs)  process  sequences  by
maintaining a hidden state that summarizes previous inputs. Unlike Markov chains, which only depend on
the  last  state,  RNNs  can  incorporate  long  histories.  A  2022  study  used  LSTMs  to  forecast  human
decision‑making  in  psychological  tasks  (Iterated  Prisoner’s  Dilemma  and  Iowa  Gambling  Task).  The
researchers  trained  the  networks  on  168 386  decisions  and  showed  that  LSTMs  outperformed  logistic
regression and vector autoregression in predicting individuals’ action sequences . The weights of the
LSTM models for top performers had broader distributions than those for poor performers, suggesting
differences in strategy .

Transformers  use  self‑attention  to  model  dependencies  between  all  positions  in  a  sequence,  enabling
parallel  processing  and  capturing  long‑range  interactions.  A  2025  article  introduced  MPHI‑Trans,  a
Transformer‑based  multimodal  temporal  model  for  adolescent  mental‑health  prediction.  By  combining
multimodal data (text, images, physiological signals) with temporal modelling and personalized features,
the model provided accurate individual predictions and targeted interventions . MPHI‑Trans integrates
LSTMs  for  temporal  modelling  with  a  Transformer  self‑attention  mechanism  for  data  fusion  and
outperforms static multimodal models in capturing long‑term emotional fluctuations .

Synergy and Hierarchical Modelling

Sequence models can serve as the perceptual front‑end for probabilistic frameworks. For example, an LSTM
or Transformer could recognise long‑range patterns in a person’s behaviour and produce a feature vector.
This vector could then be used as a node in a Bayesian network that models causal relationships between
high‑level factors (e.g., stress → relapse). The Bayesian network can feed its predictions into an RL agent
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that  schedules interventions.  Such layering combines deep predictive power,  causal  interpretability  and
adaptive control.

Graphical Integration of Methods

To design a comprehensive AI system for behavioural prediction and intervention, the models above can be
layered as follows:

Perception layer: Sequence models (LSTMs or Transformers) extract features from multimodal
behavioural data (text, speech, physiological signals). Chaos theory and entropy measures assess
variability and detect early warning signals. An HMM or clustering model segments behaviour into
discrete states (e.g., mood states).
Causal inference layer: A dynamic Bayesian network models how high‑level variables influence
each other over time. State‑space models and Kalman filters estimate latent trajectories of emotional
states.
Network layer: Graph neural networks integrate information about social interactions or brain
connectivity. Agent‑based models simulate group dynamics and evaluate policy changes.
Control layer: Reinforcement learning optimizes personalised interventions, using predictions from
the causal and network layers as state information. The RL agent can use entropy or chaos detection
to adjust exploration versus exploitation.

This  hierarchical  architecture  blends  probabilistic  reasoning  with  deep  learning  and  complex  systems
theory.  It  affords  interpretability  (via  BNs  and  state‑space  models),  flexibility  (via  RNNs/Transformers),
sensitivity to nonlinear dynamics (via SDEs and chaos), and adaptability (via RL).

Conclusion

Markov chains opened the door to modelling sequential behaviour, but modern AI offers a rich toolkit for
understanding human dynamics.  Hidden Markov models infer latent psychological  states;  Bayesian and
state‑space models capture causal and temporal dependencies; stochastic differential equations describe
continuous  fluctuations;  reinforcement  learning  learns  personalized  intervention  policies;  graph  neural
networks  and  agent‑based  simulations  incorporate  social  and  neural  networks;  chaos  theory  explains
sudden behaviour  changes;  and  information‑theoretic  measures  quantify  complexity  and  predictability.
Combining these approaches allows researchers to build robust, interpretable and adaptive systems for
behavioural prediction and mental‑health interventions.
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