
Cross‑Domain Modeling Techniques for Behavioral
AI: Finance, Evolutionary Biology & Astrophysics

Introduction

Models such as Markov chains, Hidden Markov Models (HMMs), state‑space models, stochastic differential
equations,  reinforcement  learning  and  graph/agent‑based  models  are  widely  used  to  model  complex
systems. These techniques were developed for diverse domains – from predicting stock‑market regimes to
identifying evolutionary patterns and modelling orbital dynamics. This report investigates how these same
models can be repurposed to understand and predict  psychological  tipping points in behavioral  AI.  By
exploring the cross‑domain literature, we identify the strengths of each technique and show how they can
be stacked into a layered system for behavioural prediction.

Why Cross‑Domain Methodology Matters

Transferable theory – The mathematical structures underlying Markov chains, Kalman filters or RL
algorithms are domain‑agnostic. A state‑transition probability in a stock market regime model is
mathematically equivalent to a state transition in a mental state model. Therefore the knowledge
gained from finance or astrophysics can inform mental‑health modelling.
Shared challenges – Complex systems in finance, biology and astrophysics are high‑dimensional,
non‑linear and noisy. Techniques developed to handle non‑stationary financial time series or
wandering astrophysical signals may help detect subtle psychological shifts before they become
crises.
Evidence of cross‑application – Hidden Markov Models originally developed for speech recognition
were later used to map genome sequences and to detect gravitational‑wave frequency drift.
Reinforcement learning developed for robotics is now used for stock‑trading and astronomical
scheduling. These examples show that modelling tools are portable when there is a similar
underlying problem structure.

The sections below summarise how each modelling technique has been used in the three domains (finance,
evolutionary biology,  astrophysics)  and discuss how they can be re‑imagined for behavioural  AI.  A final
section proposes a layered architecture combining these models.

Hidden Markov Models and Regime‑Switching

Finance

In  financial  markets,  returns  often  oscillate  between  bullish  (upward),  calm  and  bearish  (downward)
regimes. A study of Middle‑Eastern and North African (MENA) markets used a Hidden Markov Model to
relate a  financial stress index to stock‑market dynamics. The authors estimated transition probabilities
between regimes and found that the bullish state often persists longer than other states; the probability of
transitioning from bullish to calm was low, and mean returns indicated that bearish and calm regimes may

• 

• 

• 

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf


be more attractive for risk‑averse investors . Another study trained a Hidden Markov Model on historical
closing  prices  to  predict  future  prices  and  evaluated  performance  using  error  metrics  and  directional
prediction accuracy .  These works show that  HMMs can reveal  latent  market  conditions and predict
regime shifts.

Evolutionary Biology

In genomics, researchers used custom HMM profiles to analyse prokaryotic genome space. By scanning
~11   000  species  with  sensitive  HMMER  profiles,  they  traced  the  distribution  of  NADH‑quinone
oxidoreductase  subunits  (Complex   I)  and  found  that  about  51   % of  species  possessed  a  complete
Complex I, indicating multiple evolutionary variants . HMMs thus provide a probabilistic way to annotate
genes and infer hidden evolutionary states.

Astrophysics

Continuous gravitational‑wave signals from spinning neutron stars may experience spin wandering due to
stochastic variations in rotational frequency. A 2025 study compared several search algorithms – including a
hidden Markov model solved by the Viterbi algorithm – for detecting these signals. The HMM approach
models the gravitational‑wave frequency as a stochastically wandering hidden variable and recovers the
signal by tracking the most probable sequence of frequencies . The study demonstrates that HMMs can
efficiently handle stochastic frequency drift in astrophysical data.

Implications for Behavioral AI

Mental  health  data  often  exhibit  sudden  shifts  (e.g.,  relapse  vs.  remission).  HMMs  can  model  latent
psychological  states  (stress,  calm,  manic)  and  transitions  between  them.  Techniques  for  estimating
transition  matrices  in  finance  or  astrophysics  can  be  applied  to  behavioural  regime‑switching.  For
example,  a  high  probability  of  remaining  in  a  manic  state  could  signal  a  need  for  more  intensive
intervention, analogous to the persistence of a bullish market.

State‑Space Models, Kalman Filters & Stochastic Differential
Equations

Finance

Regime‑switching  is  often  combined  with  state‑space  models to  handle  noisy  observations  and
unobserved factors.  State‑space models  use  a  latent  state  vector  that  evolves  over  time and generate
observable data through a measurement equation. Kalman filters and their extensions (e.g., particle filters)
provide optimal  estimates when noise is  Gaussian.  Financial  economists  employ these filters to extract
hidden volatility or macroeconomic factors from asset prices.

Evolutionary Biology

Ecological systems are dynamic and subject to noise. Multivariate state‑space models have been used to
study fish populations and ecological  time series.  Stochastic  differential  equations (SDEs)  offer another
continuous‑time  framework;  the  drift  and  diffusion  terms  capture  deterministic  trends  and  random
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fluctuations.  For  example,  Ornstein–Uhlenbeck models  describe how trait  values  revert  to  an optimum
while experiencing random shocks.

Astrophysics

Orbit  determination  is  a  classical  state‑space  problem.  A  2025  preprint  proposed  modelling  orbital
dynamics as a  stochastic system and solving it with sequential filters (e.g., Kalman and particle filters).
The authors argued that linearised models assuming Gaussian errors are insufficient for highly nonlinear
orbital  motion.  By adopting stochastic  numerical  integrators and sequential  filters,  they simultaneously
estimated  the  process  noise  and  achieved  accurate  tracking  of  low‑Earth  orbit  objects  in  simulated
scenarios .  This  demonstrates that state‑space approaches combined with stochastic  integrators can
handle non‑linear, noisy dynamics.

Implications for Behavioral AI

Human  behaviours—mood,  attention  or  relapse  risk—are  dynamic  and  noisy.  State‑space  models  can
describe these processes as latent variables evolving over time, with ecological momentary assessments
(EMA) serving as observations. Kalman or particle filters used to track orbits or financial volatility can be
used to estimate a person’s underlying state.  SDEs (e.g.,  Ornstein–Uhlenbeck processes) can model the
tendency to return to an equilibrium mood while capturing random shocks (stressful events). Identifying
process noise and measurement noise will enable better forecasts of psychological tipping points.

Reinforcement Learning & Sequence Models

Finance

Reinforcement learning (RL) has become popular in algorithmic trading. A 2025 PeerJ Computer Science
article proposed an actor–critic RL model combined with an adaptive data window to trade commodities
like gold, Euro and crude oil. The RL agent uses a neural network to estimate policy and value functions; the
proposed approach achieved average loss reductions of 0.03 % (Euro), 0.25 % (gold) and 0.13 % (crude oil)
in the test phase . The authors note that RL is attractive because it allows agents to learn directly from
interactions  with  the  market  and  adapt  to  constant  fluctuations;  prior  studies  show  RL  surpasses
traditional  machine‑learning approaches by  optimizing policies  to  maximize profits  while  minimizing
losses in real time .

Evolutionary Biology

Evolutionary processes involve adaptation driven by rewards (fitness).  Evolutionary game theory and RL
share conceptual similarities: an agent learns to maximise a fitness function through trial and error. RL
algorithms have been used to model foraging behaviour, predator–prey dynamics and even protein folding.
They capture the notion that organisms adapt strategies based on environmental  feedback,  akin to RL
agents.

Astrophysics

Astronomical observatories must allocate observation time optimally.  The QuarkNet project described a
reinforcement‑learning program that  optimizes observation schedules for celestial objects by receiving
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the states of objects and allocating time based on RL policies. Neural networks built using TensorFlow learn
from data, with reward functions defining the objectives (e.g., maximizing useful observations). The project
aims to incorporate RL into surveying strategies for large astronomical projects . This shows that RL
can handle scheduling problems in high‑stakes environments like astrophysics.

Sequence Models

Long‑term dependencies often span across time and modalities. Sequence models such as long short‑term
memory (LSTM) networks and transformers have been used to predict human decisions and astrophysical
time series.  These models learn complex patterns without assuming Markovian dynamics.  They can be
integrated with RL (e.g., deep RL) for improved policy learning.

Implications for Behavioral AI

RL provides a framework for adaptive interventions: an agent interacts with a person’s digital environment
and  chooses  interventions  based  on  reward  signals  (improvements  in  mood,  reduced  risk).  Sequence
models  can  process  long  histories  of  mood  data,  detect  precursors  to  tipping  points  and  feed  this
information into RL agents. For example, the actor–critic architecture used for trading could be adapted to
schedule therapy sessions or deliver behavioural nudges.

Graph & Agent‑Based Models

Graph neural  networks (GNNs) and agent‑based models (ABMs) capture interactions among entities.  In
finance, ABMs represent heterogenous traders whose local rules can produce market crashes or bubbles. In
evolutionary  biology,  ABMs  simulate  the  interactions  of  individuals  and  their  environment  to  explain
emergent phenomena. In astrophysics, networks represent relationships among celestial bodies or sensors.

GNNs generalise  neural  networks  to  graph‑structured data  and allow information to  propagate  across
nodes. They can integrate multimodal data (e.g., EEG and speech) for mental‑health detection. ABMs are
particularly powerful for modelling social behaviours where individuals influence each other; such models
capture heterogeneity and emergent patterns not accessible to equation‑based models.

Information‑Theoretic Approaches

Information theory underlies statistical  modelling by quantifying  uncertainty and  mutual information
between variables.  In  cognitive  neuroscience,  mutual  information  between tasks  and  neural  activation
helps  decompose  sensorimotor,  contextual  and  episodic  components .  In  astrophysics  and  finance,
information theory informs trading strategies and detection thresholds. Integrating information‑theoretic
measures into behavioural AI can help quantify complexity, detect early warning signals (rising entropy) and
optimise information flow across model layers.
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Layered Behavioral AI System

We propose a  layered system (diagram below)  that  stacks the modelling approaches used in  finance,
evolutionary biology and astrophysics into a unified behavioural AI framework:

Domain Knowledge Layer – Use domain‑specific insights (finance, biology, astrophysics) to inspire
modelling strategies. For example, regime‑switching in markets suggests looking for hidden mood
states in humans.
Modelling Layer – Apply models appropriate for the behavioural data: Hidden Markov models for
latent states, state‑space models and stochastic differential equations for continuous processes, RL
& sequence models for adaptive decision‑making, and graph & agent‑based models for social
interactions.
Information Layer – Use information‑theoretic measures to quantify uncertainty, detect tipping
points and guide model selection.

This layered architecture is illustrated in Figure 1 below. The arrow directions indicate how knowledge from
each domain feeds into specific modelling approaches; the models then propagate information down to the
information‑theory layer, which assesses uncertainty and guides decision‑making.

Cross‑Domain Summary Table

Domain Modelling technique Summary of key findings

Finance
Hidden Markov models;
state‑space models;
reinforcement learning

HMMs uncover latent bullish/calm/bearish regimes and
show persistence of regimes . RL trading agents using
actor‑critic networks reduce average losses in currency
and commodity markets  and adapt to market
fluctuations better than traditional ML .

Evolutionary
Biology

Hidden Markov models;
SDEs; agent‑based
models

Custom HMM profiles map the distribution of Complex I
subunits across ~11,000 species, revealing that ~51 %
possess complete complexes . Agent‑based models
simulate interactions and heterogeneity to explain
emergent behaviours in ecological systems.

Astrophysics

Hidden Markov models;
stochastic state‑space
models; reinforcement
learning

HMM‑Viterbi algorithms track stochastic frequency
variations in continuous gravitational‑wave signals .
Sequential filters using stochastic numerical integrators
accurately track orbital dynamics and process noise .
RL is used to optimise observation schedules for
astronomical surveys .

Discussion: Re‑purposing Models for Psychological Tipping Points

Similarity of Dynamics – Financial markets, biological populations and astrophysical systems
exhibit regime shifts, non‑linear dynamics and noise. Mental‑health trajectories similarly alternate
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between stable periods and sudden transitions (relapse or improvement). Models successful in those
domains can thus inform psychological predictions.
Latent States & Regimes – HMMs used to detect market stress or gravitational‑wave frequencies
can be applied to detect latent psychological states from wearable data or self‑reports. Transition
probabilities estimated in financial studies may guide interventions (e.g., if the probability of
transitioning from moderate stress to high stress is high, proactively deliver support).
Stochastic Trajectories – State‑space models and SDEs developed for orbit determination or trait
evolution can model continuous mood trajectories. Kalman/particle filters can produce real‑time
estimates of underlying mental states and forecast tipping points.
Adaptive Decisions – RL agents that trade stocks or schedule telescopes can be repurposed as 
therapeutic intervention schedulers, learning to deliver support at the right moment and adapt to
individual responses. Sequence models can capture long‑term dependencies in behaviour data and
inform RL policies.
Networks & Emergence – Graph and agent‑based models used in social networks, ecology and
finance can simulate how peer influence or social support shapes mental health. Incorporating
heterogeneity and emergent effects is crucial for designing community‑level interventions.
Information Theory – Measuring entropy and mutual information across behavioural features can
detect increasing complexity or unpredictability preceding a tipping point. Information‑theory
metrics can also guide which model layer (HMM, SDE, RL) is most informative for a given individual.

Conclusion

Modelling techniques originally developed for finance, evolutionary biology and astrophysics offer powerful
tools for behavioural AI. Hidden Markov models reveal latent regimes; state‑space models, Kalman filters
and stochastic differential  equations capture continuous dynamics;  reinforcement‑learning agents make
adaptive decisions; graph and agent‑based models account for social interactions; and information‑theory
measures quantify  uncertainty.  These techniques can be  stacked into a  layered system where domain
knowledge informs model selection and information‑theory metrics regulate decision‑making. Repurposing
cross‑domain models will help predict  psychological tipping points, optimize interventions and deepen
our understanding of human behaviour.
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